Control theory and high energy eigenfunctions
نویسندگان
چکیده
منابع مشابه
emittance control in high power linacs
چکیده این پایان نامه به بررسی اثر سیم پیچ مغناطیسی و کاوه یِ خوشه گر با بسامد رادیویی بر هاله و بیرونگراییِ باریکه هایِ پیوسته و خوشه ایِ ذرات باردار در شتابدهنده های خطیِ یونی، پروتونی با جریان بالا می پردازد و راه حل هایی برای بهینه نگهداشتن این کمیتها ارایه می دهد. بیرونگرایی یکی از کمیتهای اساسی باریکه هایِ ذرات باردار در شتابدهنده ها است که تاثیر قابل توجهی بر قیمت، هزینه و کاراییِ هر شتابدهند...
Approach to energy eigenvalues and eigenfunctions from nonperturbative regions of eigenfunctions.
We study the approach to energy eigenvalues and eigenfunctions of Hamiltonian matrices with band structure from diagonalization of their truncated matrices. Making use of a generalization of Brillouin-Wigner perturbation theory, it is shown that in order to obtain approximate energy eigenvalues and eigenfunctions the sizes of truncated matrices should be larger than the nonperturbative regions ...
متن کاملEnergy Spectrum and Eigenfunctions through the Quantum Section Method
We present the Quantum Section Method as a quantization technique to compute the eigenvalues and the eigenfunctions of quantum systems. As an instructive example we apply this procedure to quantize the annular billiard. The method uses the symmetry of the system to determine an auxiliary section separating the system into partial regions and computes the Green's functions for Schroedinger's equ...
متن کاملStatistics of energy levels and eigenfunctions in disordered systems
The article reviews recent developments in the theory of fluctuations and correlations of energy levels and eigenfunction amplitudes in diffusive mesoscopic samples. Various spatial geometries are considered, with emphasis on low-dimensional (quasi-1D and 2D) systems. Calculations are based on the supermatrix σ-model approach. The method reproduces, in so-called zero-mode approximation, the uni...
متن کاملHigh energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials
For a class of one-dimensional Schrödinger operators with polynomial potentials that includes Hermitian and PT -symmetric operators, we show that the zeros of scaled eigenfunctions have a limit distribution in the complex plane as the eigenvalues tend to infinity. This limit distribution depends only on the degree of the polynomial potential and on the boundary conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journées Équations aux dérivées partielles
سال: 2004
ISSN: 0752-0360
DOI: 10.5802/jedp.13